226 LOCALIZATION OF LIGHT IN THREE-DIMENSIONAL DISORDERED DIELECTRICS

55. Z Wcmww and A. Ortowski, “Anderson localization of electromagnetic waves in confined
dielectric media,” Phys. Rev. E 59(3), 3655 (1999).

56. B. Souillard, “Waves and electrons in inhomogeneous media,” in J. Souletie, J.

Vannimenus, and R. Stora, Eds., QRS% and Matter, North-Holland, Amsterdam, The
Netherlands, 1987, p. 305.

BN CHAPTER SIX

Field Distribution, Anderson
Localization, and Optical Phenomena in
Random Metal-Dielectric Films

ANDREY K. SARYCHEV
Center for Applied Problems of Electrodynamics, 127412 Moscow, Russia

VLADIMIR M. SHALAEV
Department of Physics, New Mexico State University, Las Gruces, NM 88003

This chapter presents a theory of optical, infrared (IR), and microwave response of
metal—dielectric inhomogeneous films. First, we describe the generalized Ohm’s law
approximation formulated for the case when the inhomogeneity length scale is much
smaller than the wavelength, but is not smaller than the skin (penetration) depth for
metal grains. In this approach, electric and magnetic fields outside a film are related
to the currents. inside the film. The computer simulations, based on the generalized
Ohm’s law approximation, reproduce the prominent absorption band near the
percolation threshold and show that local electric and magnetic fields experience
giant spatial fluctuations, which were detected in recent ox@ﬁ:.:oam The fields are
localized in small spatially separated peaks: electric and magnetic hot spots. A
scaling theory, which is discussed in detail, predicts that the hot spots represent
localized surface plasmons. The localization maps the Anderson transition problem,
which is described by the random Hamiltonian with diagonal and off-diagonal
disorder. The local fields exceed the applied field by several orders of magnitude.
resulting in the enormous enhancement of various optical phenomena (Raman anc
hyper-Raman scattering, Kerr refraction, four-wave mixing, etc.). At percolation,
dip in the dependence of optical processes on the metal concentration is predicted. I
is also shown that transmittance of a regular array of holes in a metal film is muck
enhanced when the incident wave is in resonance with one of the internal modes ir
the film.
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6.1. INTRODUCTION

Random metal-dielectric films, also known as semicontinuous metal films. are
usually produced by thermal evaporation or spattering of metal onto an Em:_wm:
substrate. In the growing process, first, small clusters of metal grains are formed ms%
eventually, at a percolation threshold, a continuous conducting path appears @ogmm:,
the ends of the sample, indicating a metal-insulator transition in the system. At high
surface coverage, the film is mostly metallic with voids of irregular shape and
finally, .Em film becomes uniform. Over the past three decades, the electric trans on
?oca.udow of the semicontinuous metal films have been a topic of mom?m
experimental and theoretical study. The classical percolation theory had been
oEEoNoa to describe an anomalous behavior of the conductivity and other transport
properties near the percolation threshold [1-4]. Recently, it was shown that quantum
wmooa such as tunneling between metal clusters and electron localization become
:.zwonma at the percolation even at room temperature (see [5-8] and references
o:ma. therein). Thus low-frequency divergence of the dielectric constant was
Em&oﬁa theoretically [7,8] and then obtained experimentally [9].

In this chapter, we will consider the optical response of metal—insulator thin films
that have been intensively studied both experimentally and theoretically along with
transport phenomena (see, e.g., [3,4,10-22]). A two-dimensional (2D) nonhomo-
geneous film is a thin layer over which the local physical properties are not uniform
The Tesponse of such a layer to an incident wave depends crucially on the E:oBo..
geneity length scale compared to the wavelength and also on the angle of incidence
Cm:w:.un when the wavelength is smaller than the inhomogeneity scale, the w:oaosm
wave is mmm:owoa in various directions. The total field that is wom:oaom in a certain
direction is the sum of the elementary waves scattered in that direction by each
&@E@S@ scatterer on the surface. As each elementary wave is given not only by its
amplitude, but also by its phase, this sum will be a vector sum. The scattered wave is
Eos. distributed in various directions, though certain privileged directions may
receive more energy than others. By contrast, when the inhomogeneity length scale
is B.:or smaller than the wavelength, the resolution of the wave is too small to “see”
the irregularities, therefore the wave is then reflected specularly and transmitted in a
io:..mmmuna direction, as if the film were a homogeneous layer with bulk effective
physical w.aomoaom (conductivity, permittivity, and permeability) that are uniform
.;o. wave is coupled to the inhomogeneities in such a way that irregular currents mao.
excited on the surface of the layer. Strong distortions of the field then appear near the
surface; ro€o<.oh they decay exponentially so that far enough from the surface the
wave resumes its plane wave character.

1;.@ Q:.Omao: of scattering from a nonhomogeneous surface has attracted
mﬁoz.zoﬁ.ﬂ since the time of Lord Rayleigh [23]. Due to the wide range of potential
applications in, for example, radiowave and radar techniques, most efforts have been
concentrated in the regime where the scale of inhomogeneity is larger than the
wavelength [24]. In the last decade, a problem of localization of surface polaritons
[25] and other “internal modes™ due to their interaction with surface roughness
attracted a lot of attention. This localization was found to contribute a maximum to
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the angular dependence of the intensity of the nonspecularly reflected light in the
antispecular direction [26] and other ‘“‘resonance directions” [27,28] as well. The
development of near-field scanning optical microscopy has opened the way to probe
the surface polariton field above the surface and visualize its distribution. Vast
progress in the near-field optics of various rough surfaces and metal grain structures
is discussed in Chapter 3. The subject of this chapter belongs to another regime,
where the inhomogeneity length scale is much smaller than the wavelength, but can
be of the order or even larger than skin depth. In other words, coupling of a metal
grain with an electromagnetic (EM) field is supposed to be strong in spite of its
subwavelength size. In particular, we focus on the high-frequency response (optical.
IR, and microwave) of thin, metal-dielectric random films.
The optical properties of metal—dielectric films show anomalous phenomena tha
are absent for bulk metal and dielectric components. For example, the anomalou:
absorption in the near-IR spectral range leads to unusual behavior of transmittance
and reflectance. Typically, the transmittance is much higher than that of continuou
metal films, whereas the reflectance is much lower (see, e.g., [3,4,10,11,16-18])
Near and well below the percolation threshold, the anomalous absorbance can be a
high as 50% [12-16,20]. A number of theories were proposed for calculation of the
optical properties of semicontinuous random films, including the effective-mediun
approaches [29,30], their various modifications [3,16,17,31-35], and the renorma
lization group method (see e.g., [4,36,37]). In most of these theories, the semiconti
nuous metal—dielectric film is considered as a fully 2D system and quasistati
approximation is invoked. However, usage of that approximation implies that bot
the electric and magnetic fields in the film are assumed to be 2D and curl-free. Thz
assumption ceases to be valid when the fields are changed considerably in th
physical film and in its close neighborhood, which is usually the case in a sem
continuous metal thin film, especially in the strong skin effect regime.

In an attempt to expand the theoretical treatment beyond the quasistatic approx
mation, an approach was recently proposed that was based on the full set
Maxwell’s equations [18-20]. This approach does not use the quasistatic approxim
tion because the fields are not assumed to be curl-free inside the physical filn
Although that theory was proposed with metal—insulator thin films in mind, it is i
fact quite general and can be applied to any kind of inhomogeneous film undk
appropriate conditions. For reasons that will be explained below, this theory is calle
the “generalized Ohm’s law” (GOL). We present this new theory here.

Below, we restrict ourselves to the case where all the external fields are parallel
the plane of the film. This means that an incident wave, as well as the reflected ar
transmitted waves, are traveling in the direction perpendicular to the film plane. V
focus our attention on the electric and magnetic field magnitudes at certain distanc
away from the film and relate them to the currents inside the film. We assume th
inhomogeneities on a film are much smaller in size than the wavelength A (b
not necessarily smaller than the skin depth), so that the fields away from the fil
are curl-free and can be expressed as gradients of potential fields. The electt
and magnetic induction currents averaged over the film thickness obey the usu
2D continuity equations. Therefore, the equations for the fields (e.g., V X E=
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and the equations for the currents (e.g., V - j = 0) are the same as in the quasistatic
case. The only difference is that the fields and the averaged currents are now
related by new constitutive equations and that there are magnetic as well as electric
currents.

To determine these new constitutive equations, we find the electric and magnetic
field distributions inside the conductive and dielectric regions of the film. The
boundary conditions completely determine solutions of Maxwell’s equations for the
fields inside a grain when the frequency is fixed. Therefore the internal fields, which
change very rapidly with position in the direction perpendicular to the film, depend
linearly on the electric and magnetic field away from the film. The currents inside the
film are linear functions of the local internal fields given by the usual local
constitutive equations. Therefore, the currents flowing inside the film also depend
linearly on the electric and magnetic fields outside the film. However, the electric
current averaged over the film thickness now depends not only on the external
electric field, but also on the external magnetic field. The same is true for the average
magnetic induction current. Thus we have two linear equations that connect the two
types of average internal currents to the external fields. These equations can be
considered as a generalization of Ohm’s law to the nonquasistatic case and they dub
as GOL [19]. The GOL forms the basis of a new approach to calculate the EM
properties of inhomogeneous films.

The continuity equations for the electric and magnetic currents use the GOL and
take into account the potential character of the electric and magnetic fields outside
the film. This allows us to determine the field and current distribution over a metal—
dielectric film in the computer experiment, and, finally, to calculate the optical
properties of the film. Computer simulations show that the local electric and
magnetic fields both fluctuate strongly over the film at the metal concentration close
to the percolation threshold. The fields are localized in small spatially separated
peaks: electric and magnetic hot spots. When the skin effect in the fnetal grains is
strong, the magnetic fluctuations are as large as fluctuations of the local electric field.
The amplitude of local field fluctuations in the case of a strong skin effect is large
regardless of losses in the metal. It is also important to note that giant magnetic field
fluctuations is a purely nonquasistatic effect that cannot be obtained within the
traditional approach used earlier.

We present a scaling theory of local field fluctuations in the random semi-
continuous metal films [38-46]. The theory is based on the fact that the problem of
optical excitations in semicontinuous metal films mathematically maps the Anderson
transition problem. This allowed us to predict localization of surface plasmons in
the films and to describe in detail the localization pattern. It is shown that the
surface plasmons eigenstates are localized on a scale much smaller than the
wavelength of the incident light. The surface plasmons eigenstates, with eigenvalues
close to zero (resonant modes), are excited most efficiently by the external field.
Since the eigenstates are localized and only a small portion of them are excited by
the incident wave, the overlapping of the eigenstates can typically be neglected,
which significantly simplifies theoretical consideration and allows one to obtain
relatively simple expressions for the local field fluctuations. It is important to stress
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that the surface plasmon localization length is much smaller than the wavelength; in
that sense, the predicted subwavelength localization of the surface plasmons quite
differs from the long-time discussed localization of light due to strong scattering in a
random homogeneous medium [6,47].

The developed scaling theory of local field fluctuations in semicontinuous metal
films opens up new means to study the classical Anderson problem by taking
advantage of unique characteristics of laser radiation, namely, its coherence and high
intensity. For example, this theory predicts that at percolation there is a minimum in
nonlinear optical responses of metal—dielectric composites, a fact that follows from
the Anderson localization of surface plasmon modes and can be studied and verified
in laser experiments.

The rest of this chapter is organized as follows: the GOL for semicontinuous
metal films is derived in Section 6.2. In Section 6.3, it is shown how the optical
properties: (reflectance, transmittance, and absorbance) are found in the GOL
approximation. The original computer method and calculation of the local electric
and magnetic field are presented in Section 6.4. In Section 6.5 and 6.6, analytical
theory is developed for the giant local field fluctuations. In Section 6.7, the
theoretical results are implemented to find equations for the spatial moments
of the local fields. In Section 6.8, we consider optical properties of a metal film that is
perforated with an array of subwavelength holes; we show here that the trans-
mittance through such a film can be strongly enhanced in agreement with recent
experimental observations. Section 6.9 summarizes and concludes this chapter.

6.2. GOL AND BASIC EQUATIONS

We base the following presentation on the results of [18-20]. In contrast to the
traditional consideration, it is not assumed that the electric and magnetic fields
inside a semicontinuous metal film are curl-free and z independent, where the z
coordinate is perpendicular to the film plane.

First, let us consider a homogeneous conducting film with a uniform conductivity
o,, and thickness d, and assume constant values of the electric field E; and magnetic
field H; at some reference plane z = —d/2 — £, behind the film, as shown in Fig. 6.1.
Under these conditions the fields depend only on the z coordinate, and Maxwell’s
equations for a monochromatic field can be written in the following form:

d i®

= E(z) = —— u()[n x H{z)] (6.1)
ZHE = -7 o)l x B (6:2)

with boundary conditions
HAN” |&\M|NOV Hme H.HAN“ [&\NINOV HH.HH Amwv
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.Em.—:..o 6.1. The scheme used in a theoretical model. Electromagnetic wave of wavelength A
is incident on a thin-metal-insulator film with thickness d. It is partially reflected and
absorbed, and the remainder is transmitted through the film. The amplitudes of the electric and

magnetic fields, which are averaged over the plane z = —d/2 — I, behind the film, are equal to
each other. q

where E; and H; are parallel to the film plane. Here, the conductivity c(z) is equal
to the metal conductivity ,, inside the film (—d/2 < z < .d/2) and to 6, = —iw/4n
oEmE.m the film (z < —d/2 and z > d/2), and similarly, the magnetic permeability
u(z) is equal to the film permeability p,, inside the film and to one outside
the QEW the unit vector m = (0,0,1) is perpendicular to the film plane. When
solving Egs. (6.1) and (6.2), it is taken into account that the electric and
magnetic fields are continuous at the film boundaries. In this way, the fields E(z)
and EANV are determined everywhere. Then, electric j; and magnetic j; currents
flowing in between the two planes at z = —d/2 — I, and at z = dj2+1y are
calculated as

. io | [~ 42 a/2+0
jg=—— 4_. E(z)dz + _. enE(2)dz + ~— E(z)dz (6.4)

4 —d/2—l —d/2 a2
e ‘_i&\m EA v& d/2 d /241
o=+ z T; :mgﬁ; H(z)d: .
an | ) g, ' () » (z)dz (6.5)

éron.o ms.H. 4inG,, /w is the metal dielectric constant. In what follows, it is assumed,
for m.:Eu:o:K that the magnetic permeability p,, = 1. Since the Maxwell equations
are linear, the local fields E(z) and H(z) are linear functions of the boundary values
E; and H, defined at the plane z = —d/2 — [,

E(z) = a(z)E1 + c(z)[n x H;] (6.6)
H(z) = b(z)H, + d(z)[n x E{] (6.7)
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Note that n is the single constant vector in the problem, which let us to build polar
[n x H;] and axial [n x E;] vectors in Egs. (6.6) and (6.7). By substituting Eq. (6.6)
for E(z) and Eq. (6.7) for H(z) in Eqs. (6.4) and (6.5), we express the currents jg and
jy in terms of the boundary (surface) fields E; and H; as

je =sEi +g1 [n x Hy (6.8)
iy =mH; + g2 [n < Eq] (6.9)

In contrast to the usual constitutive equations, the planar electric current Jg, which
flows between the planes z = —d/2 — Iy and z = d/2 + ly, depends not only on the
external electric field E; but also on the external magnetic field H;. The same is true
for the magnetic induction current jy. These equations constitute the GOL. The
Ohmic parameters s, 7, g1, and g» have the dimension of surface conductivity (cm/s)
and depend on the frequency o, the metal dielectric constant &, the film thickness d,
and the distance I, between the film and the reference plane z = —d /2 — ly. Below,
the films are supposed to be invariant under reflection through the plane z =0. In
this case, g1 = g2 = g as it is shown in [18], and the Ohmic parameter g can be
expressed in terms of parameters s and m as

g=—7+ @wvwia (6.10)

Then, the GOL equations (6.8) and (6.9) take the following form:

uh”h@~+% T-XM.ML AQH:
jy=mH; + g n x E{] (6.12)

where the Ohmic parameter g is given by Eq. (6.10). The Ohmic parameters s and m
can be expressed in terms of the film refractive index n = \/&n and film thickness d
in the following way:

§= w|Mm [e”™"(n cos(adk) — i sin(adk))® — " (n cos(adk) + i sin(adk))?]
(6.13)

m=—— [e7 (i cos(adk) + n sin(adk))? — ¢*"(—i cos(adk) +n sin(adk))?]

- 8nm
(6.14)

where we still assume, for simplicity, that ¢ = 1 outside the film (z< —d/2
z>d/2) and introduce the wave vector k = ®/c and dimensionless paramete;
a = ly/d (see [18,19]). The skin (penetration) depth 8 is equal to 8 = 1/kImn ir
these notations. In the microwave spectral range, metal conductivity is real and the
dielectric constant &, is purely imaginary and the skin depth & = ¢ /v/216,0. Or
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the other hand, the dielectric constant is negative for a typical metal in the optical
and IR spectral ranges, therefore § = 1/k+/|e,,| in this case
We now turn to the case of laterally inhomogeneous films. Then, the currents jz
and j defined by Egs. (6.4) and (6.5), as well as the fields E; and H;, are functions
of the 2D vector r = {x, y}. From Maxwell’s equations, it follows that the fields and
currents are connected by linear relations
Je(r) =sE; +¢g mx Hy] (6.15)

ig(r) =mH; + g n x E{] (6.16)

where s, m, and g are some integral operators now. The metal islands in semicon-
tinuous films usually have an oblate shape so that the grain diameter D is much
larger than the film thickness d (see, e.g., [11]). When the thickness of a conducting
grain d (or skin depth &) and distance Iy are much smaller than the grain diameter D,
the relation of the fields E; and H; to the currents becomes fully local in Egs. (6.15)
and (6.16). The local Ohmic parameters s = s(r), m = m(r), and g = g(r), given
by Egs. (6.10), (6.13), and (6.14), are determined by the local refractive index
n(r) = 1/&(r), where £(r) is a local dielectric constant. Equations (6.15) and (6.16)
are the local GOL for semicontinuous films. For binary metal-dielectric semi-
continuous films, the local dielectric constant is equal to either &, or £,. The electric
J and magnetic j, currents given by Egs. (6.15) and (6.16) lie in between the planes
z==d/2 —lyand z = d/2 + ly. These currents satisfy the 2D continuity equations

Vejpt) =0  V.ju(r)=0 (6.17)

which follow from the three-dimensional (3D) continuity equations when the z
components of E; and H; are neglected at the planes z = %*(d/2 + ly). This is
possible because these components are small, in accordance with the fact that the
average fields (E;) and (H,) are parallel to the film plane. Since we consider semi-
continuous films with an inhomogeneity scale much smaller than the wavelength A,
the fields E; (r) and H, (r) are still the gradients of potential fields when considered
as functions of x and y in the fixed reference plane z = —d/2 — I, that is,

Ei(r) = =Ve,(r)  Hy(r) = -V{(r) (6.18)
By substituting these expressions in the continuity Eq. (6.17) and taking into account

the GOL Egs. (6.15) and (6.16), the system of two basic equations for the electric ¢,
and magnetic \s; potentials are obtained

V- (sVo +gmx Vi) =0 V- (mV{; +glnx Ve [)=0  (6.19)

where all variables are functions of the coordinates x and y in the reference plain.
The above equations must be solved under the following conditions:

(Vo = (E) (Vi) = H) (6.20)
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where the constant fields (E;) and (H;) are external (given) fields. Here and below
(---) denotes an average over coordinates x and “y”. . .

The essence of the GOL can be summarized as follows. The entire wE\wEm.Om a
3D inhomogeneous layer, which is described by the full set of Maxwell’s equations,
has been reduced to a set of quasistatic equations in a (2D) 8&@850.@ plane. Part wm
the price for this achievement is the introduction of coupled electric and ?mmﬁmﬁo
fields, currents, and dependence on one adjustable parameter, :mB.mG, the distance [o
to the reference plane. Comparison of the numerical m&o&mcos and the GOL
approximation for the metal film with periodic ooamwswm. [19] mr.oém that Q%W
results are generally not sensitive to the distance . The original choice lp = 0.2
[18] [i.e., parameter a = D /4d in Egs. (6.13) and (6.14)] allows us to .H@Eomcom. most
of the computer simulations except those where a surface polariton is excited in the

corrugated film.

MEDIUM
6.3. DECOUPLING GOL EQUATIONS AND EFFECTIVE
APPROXIMATION FOR TRANSMITTANCE, REFLECTANCE, AND

ABSORBANCE

To simplify the system of the basic equations (6.19) the electric m:a. magnetic moﬁm
on both sides of the film are considered [19,20]. Namely, the electric and magnetic
fields are considered at the distance [y behind the film E,(r) =E(r, —d/2 ),
H;(r) = H(r, —d/2 — o), and at the distance [y in ».,SE of the .EB Ey(r) =
E(r, d/2+ l), Ho(r) = H(r, d/2+ lo). Remember that r = {x, y} isa 2D <m.owo~
in a plane perpendicular to the “z” axis. The oonosmﬁm of the fields m:m:o.auzz Z
are still neglected. Then, the second Maxwell’s o@c.m:o.: curl H = (4n/c)j can be
written as ¢ Hdl = (4n/c)jgA, where the integration is over the contour ABCD
shown in Fig. 6.2, while the current jg is given by the GOL Eq. (6.15). When A — 0
this equation takes the following form

4n
Hy - By =% g =~ (sln x Ea] = gH) (6:21)
¢ .
When the same procedure is applied to the first Maxwell equation, curl E = ikH, it
gives
4n . 47

E,-E =—— nxjg]= - (m[n x H;] — gEy) (6.22)

where the GOL equation (6.16) has been substituted for the o_ooﬁam current jy in
Eq. (6.22). Then, electric field E, can be expressed from Eq. (6.21) in terms of the
magnetic fields H, and H; as

c

pi (H, — Hy) (6.23)

FXMLHWEHI
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Figure 6.2. The left-hand side of the Maxwell’s equation § Hdl = (4n/c)jzA is integrated
over the contour ABCD to obtain Eq. (6.21).

and the magnetic field H; can be expressed from Eq. (6.22) in terms of the electric
fields E; and E; as

c

2o (B2 = E1) , (6.24)

-

nxH]=%E -
m

Substitution the right-hand side (ths) of Bq. (6.23) in the GOL Eq. (6.16) and
substitution (6.24) in the GOL Eq. (6.15) results in

. g c
Je = sEq +%A|:m E, = dmm (Ey — H_vv (6.25)
Ju = 1 WAM 1 — s (H, — ELV . (6.26)

Finally, the relation (6.10) between the Ohmic parameters s, m, and g allows us to
rewrite the above equations as .

Jg=uE  jy=wH (6.27)

where E = (E, + E,)/2, H = (H, + H,)/2 and parameters « and w are given by
the following equations:

=—— = w=——2= (6.28)
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Thus the GOL is diagonalized by introducing new fields E and H so that Egs. (6.27)
have the same form as constitutive equations of the macroscopic electrodynamics.
The only difference is that the local conductivity o is replaced by parameter u, and
magnetic permeability p is replaced by parameter —idnw/®.

It follows from Egs. (6.28) and (6.10), (6.13), and (6.14) that the new Ohmic
parameters u and v are expressed in terms of the local refractive index n = /&(r) as

¢ tan(Dk/4) + n tan(dkn/2)
" 2n 1 - n tan(Dk/4) tan(dkn/2)
¢ ntan(Dk/4) + tan(dkn/2)

Y = 2% 7~ tan(Dk/4) tan(dkn/2)

U =

(6.29)

(6.30)

where the parameter @ = D/4d is substituted as it is discussed at the end of Section
6.2. The refractive index n in the above equations takes values n, = /€, and
ng = /&4 for metal and dielectric regions of the film, respectively. In the quasistatic
limit, when the optical thickness of metal grains is small, dkin,,| < 1, while the
metal dielectric constant is large in magnitude, |€,| > 1, the following estimates
hold:

. d . @
Uy o~ — — Wy, o~ i —
" A " 4

(d+ D/2) (d/d <« 1) (6.31)
for the metal grains. In the opposite case of strong skin effect, when the skin depth
(penetration depth) 8 = 1/k Imn,, is much smaller than the grain thickness & and
the electromagnetic field does not penetrate in metal grains, the parameters u, and
w,, take values

C2¢2 ~oD

For the dielectric region, when the film is thin enough so that dkny < 1and g5 ~ 1,
Egs. (6.29) and (6.30) give

L 2
Ug = Nmﬁb s&l:rﬂ@;fb\wv (6.33)

where the reduced dielectric constant &), = 1 + 2g4d/D is introduced. Note that in
the limit of the strong skin effect the Ohmic parameters u, and w,, are purely
imaginary and the parameter u,, is of inductive character, that is, it has the sign
opposite to the dielectric parameter uz. In contrast, the Ohmic parameter w remains
essentially the same w ~ iDw /8 for dielectric and for metal regions regardless of
the value of the skin effect. .
Potentials for the fields E,(r) and H,(r) can be introduced for the same reason as
potentials for the fields Ei(r) and H(r) [see the discussion accompanying
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Eq. (6.18)]. Therefore the fields E(r) and H(r) in Egs. (6.27) can in turn be
represented as gradients of some potentials:

E=-Vd H=-V{ (6.34)

By substituting these expressions into Eq. (6.27) and then into the continuity
Eq. (6.17), we obtain the following equations:

V- (@) Ve'(r)]

0 (6.35)
V- w(r) Vi (r)] =0

which can be solved independently for the potentials ¢’ and . Egs. (6.35) and
(6.36) are solved under the following conditions:

(Vol) = (B)=Ey (VW) = (H,) = H, (6.37)

where the constant fields Eq and Hy are external (given) fields that are determined by
the incident wave. When the fields E, H and currents jg, j are found from the
solution of Egs. (6.35)—(6.37), the local electric and magnetic fields in the plane
z = —ly — d/2 are given by the equations

_ 2n . 2n .
m_lm.*.um:?x,_& EHHE._.MFX._& (6.38)
which follow from Eqgs. (6.21) and (6.22) and definitions of the fields E and H. Note
_that the field E;(r) usually is measured in a typical near-field experiment (see
Chapter 3). The effective parameters u, and w, are defined in a usual way

(ig) = uBo = u ((Ey) + (E2))/2 (6.39)
(i) = weHo = w,((H1) + (Hy))/2 (6.40)

These expressions are substituted into Eqgs. (6.21) and (6.22), which are averaged
over the {x,y} coordinates to obtain equations .

2n

n x ((Hy) — (H,))] = - ue((E1) + (E2)) (6:41)

2n

[ x ((E2) — (E1))] = — we((Hy) + (H2)) (6.42)

for the averaged fields that determine the optical response of an inhomogeneous film.

. Let us suppose that the wave enters the film from the right half-space (see
Fig. 6.1), so that its amplitude is proportional to e, The incident wave is partially
reflected and partially transmitted through the film. The electric field amplitude in
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the right half-space, away from the film, can be written as efe ¢ + re’?), where r is
the reflection coefficient and e is the polarization vector. Then, the electric
component of the EM wave well behind the film acquires the form e te~ % where tis
the transmission coefficient. It is supposed for simplicity that the film has no optical
activity, therefore wave polarization e remains the same before and after the film. At
the planes z = d/2 + Ip and z = —d/2 — Lo, the average electric field equals to (Ey)
and (E,), respectively. Now, the wave away from the film is matched by the average
fields in the planes z = d/2 + I and z = —d/2 — Iy, that is, (Ez) = efekd/2+h) 4
rei®d/2+h)] and (E{) = e 1¢/*(d/2+10) The same matching, but with magnetic fields,
gives (Hy) = [n x e][—e *d/2+0) 4 reMd/2+h)] and (H;) = —[n x e]re*@/2+h) in
the planes z=d/2+ 1l and z= —d/2 — Iy, respectively. Substitution of these
expressions for the fields (E1), (Ez2), (H,), and (Hy) in Egs. (6.41) and (6.42) gives
two scalar, linear equations for reflection r and transmission ¢ coefficients. Solution
to these equations gives the reflectance and transmittance

2n
, (e + we)
R=|f = C (6.43)
21 21
14+—u, || 1 ——w,
c c
2\ 2
14+ .M UeWe
T=if = (6.44)
2n 2n
14+—u, J{1——we
c c
and absorbance
A=1-T—R (6.45)

of the film. Therefore the effective Ohmic parameters i, and w, completely
determine the optical properties of inhomogeneous films.

Thus the problem of the field distribution and optical properties of the metal—
dielectric films reduces to uncoupled quasistatic conductivity problems Egs. (6.35)
and (6.36) to which extensive theory already exist. Thus numerous methods
developed in the percolation theory can be used to find the effective parameters u,
and w, of the film (see Section 6.4).

Now, let us consider the case of the strong skin effect in metal grains and trace
the evolution of the optical properties of a semicontinuous metal film when the
surface density p of metal is increasing. When p = 0, the film is purely dielectric and
the effective parameters u, and w, coincide with the dielectric Ohmic parameters
given by Eq. (6.33). By substituting u, = ug and w, = wy into Egs. (6.43)-(6.45)
and assuming that the dielectric film has no losses and is optically. thin (dke; < 1), we
obtain the reflectance R= d2(eg — 1)*k?/4, transmittance 7= 1— d*(gs — 1)%k*/4,
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and the absorbance A = 0 that coincides with the well-known results for a thin
dielectric film [48,49].

It is not surprising that a film without losses has zero absorbance. The losses
are also absent in the limit of full coverage, s&oc the metal concentration p = 1,
since the strong skin effect is considered when penetration length (skin depth)
8 = 1/kImn,, is negligible in comparison with the film thickness d. In this case, the
film is a perfect metal mirror. Indeed, by substituting the Ohmic parameters u, = up,
and w, = w,, from Eq. (6.32) into Eqs. (6.43)—(6.45) we obtain for the reflectance
R = 1, while the transmittance T and absorbance A are both equal to zero. Note that
the optical properties of the film do not depend on the particle size D for the metal
concentration p = 0 and p = 1, since properties of the dielectric and continuous
metal films do not depend on the shape of the metal grains.

Now, we consider the film at the percolation threshold p = p. with p, = w for a
self-dual system [3,4]. A semicontinuous metal film may be thought of as a mirror,
which is broken into small pieces with typical size D much smaller than the
wavelength A. At the percolation threshold, the exact Dykhne formulas u, = N
and w, = /Waw,, hold [50]. Thus the following equations for the effective Ohmic
parameters are obtained from Eqs. (6.33) and (6.32)

21 2n . Dk 2d
lm.l :mﬂﬁav = mw w S\mﬁﬁnv =1 4 1 n_u.m Am.#@v

From these equations it follows that |w,/u.| ~ Dk < 1 and the effective Ohmic
parameter w, can be neglected in comparison with u,. By substituting the effective
Ohmic parameter u,(p.) given by Eq. (6.46) in Egs. (6.43)—(6.45), the optical
properties at the percolation are obtained

&g
1+ /&))"
1
T(p.) = % (6.48)
A(pe) = W _ (6.49)

(+ V)

Remember that reduced dielectric function &), = 1 + 2g4d/D. When metal grains

are oblate enough so that g4d/D < 1 and €/, — 1, the above expressions simplify to
the universal result

R(pc) (6.47)

R=T=3 A=; (6.50)

Thus, there is effective adsorption in semicontinuous metal films even for the
case when neither dielectric nor metal grains absorb light energy. The mirror broken
into small pieces effectively absorbs energy from the EM field. The effective
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absorption in a loss-free film means that the EM energy is mﬁow& E the system and
that the amplitudes of the local EM field increase up to infinity. In any real
semicontinuous metal film, the local field saturates due to nonzero losses, but
significant field fluctuations take place over the film when losses are small, as
discussed below. .

To find the optical properties of semicontinuous films for ﬁgﬁqw metal concen-
tration p, the effective medium theory can be implemented, which was o:mwzm:u\
developed to provide a semiquantitative description of the Qmswwoz. Eowom._nm of
percolating composites [3]. The effective medium theory, é.rm: co_nm applied to
Egs. (6.35), (6.39), (6.36), and (6.40), results in the following equations for the
effective parameters: :

=W — Apu,(thy, — Ua) — Udltm = 0 (6.51)
s\w — ApWe(Wn — W) — WaWm = 0 (6.52)

where the reduced concentration Ap = (p — pe)/per (pec = Wv is introduced. It
follows from Eq. (6.52) that for the considered case of a strong skin effect, when ?m
Ohmic parameters wy, and wq are given by Egs. (6.32) and (6.33), the effective
Ohmic parameter |w| < ¢ for all metal concentrations p. .H:oﬂ.omoﬁ., the ESEQQ
w, is negligible in Eqgs. (6.43) and (6.44). For further .m_BE_mom:oP the Ohmic
parameter ug can be neglected in comparison with u,, In Ew.mooo:.a term of m@
(6.51) [cf. Egs. (6.32) and (6.33)]. Then, introduction of the dimensionless Ohmic
parameter u, = (21t/c)u, allows us to rewrite Eq. (6.51) as

A
W2 —2i \m% W, — €, =0 - (653)

Right at the percolation threshold p = p. = wq when the reduced oosowsqma.o:
Ap =0, Eq. (6.53) gives the  effective Ohmic parameter u( pe) = V\mq which
coincides exactly with Eq. (6.46) and results in reflectance, :m:mﬂw:mzmoq and
absorbance given by Egs. (6.47)~(6.49), respectively. For concentrations different
than the percolation threshold, Eq. (6.53) gives

AA
=\NHN..|IN+

(6.54)
nD

which becomes purely imaginary for |Ap| > nw/\mw /A H:o:w Egs. Am.ﬁv\lﬁwm.@v
result in zero absorbance, A=1—-R—-T=1- [l /11 4+ u,)" — H\_~.+ :L =0
(recall that the effective Ohmic parameter w, is neglected). In the vicinity of a
percolation threshold, namely, for

D ;
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the effective Ohmic parameter 1/ has a nonvanishing real part and, therefore, the
absorbance

., 2/ ~(nAp/rD)? + ¢
= (6.56)
1+¢,+ N/\AV{DE:BM + g,

is nonzero and has a well-defined maximum at the percolation threshold; the width
of the maximum is inversely proportional to the wavelength. The effective absorp-
tion in almost loss-free semicontinuous metal film means that local EM fields
strongly fluctuate in the system, as was speculated above. The spectral width for the
strong fluctuations should be the same as the width of the absorption maximum, that
is, it is given by Eq. (6.55).

Note that the effective parameters u, and w, can be determined experimentally by
measuring the amplitude and phase of the transmitted and reflected waves using, for
example, a waveguide technique (see, [51] and references cited therein), or by
measuring the film reflectance as a function of the fields E; and H;y. In this case, a
metal screen placed behind the film can be used to control the values of these fields
[52,53].

6.4. COMPUTER SIMULATIONS OF LOCAL ELECTRIC
AND MAGNETIC FIELDS )

6.4.1. Kirchhoff’s Equations

To find the local electric E(r) and magnetic H(r) fields, Egs. (6.35) and (6.36)
should be solved. First, consider Eq. (6.35), which is convenient to rewrite in terms
of the dimensionless “dielectric constant” .

& = 4niu(r)/od ‘ (6.57)
as follows:
V- E(r)Vo(r) =€ (6.58)

where ¢(r) is the fluctuating part of the potential ¢’(r) so that V¢'(r) = V(r) —Ey,
(d(r)) =0, and £ = V - [§(r)Eg]. Remember that the “external” field Eq is defined
by Eq. (6.37). For the metal-dielectric films considered here, local dielectric
constant &(r) equals &, = 4niu,,/od and €; = €,D/2d for the metal and dielectric
regions, respectively. The external field Eq in Eq. (6.58) can be chosen real, while
the local potential ¢(r) takes complex values since the metal dielectric constant &,,
is complex &, = &, + i€, . In the quasistatic limit, when the skin depth & is much
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larger than the film thickness d, the dielectric constant &, coincides with the metal
dielectric constant &, as it follows from Eq. (6.31).

To get insight into the high-frequency properties of metals, a simple model
known as a Drude metal is considered, which semiquantitaively reproduces the basic
optical properties of a metal [54]. In this approach, the dielectric constant of metal
grains can be approximated by the Drude formula

gm(®) =€ — Aew\evw\ﬁ + i /o) (6.59)

where €, is contribution to g, due to the interband transitions: @, is the plasma
frequency, and ©; = 1/1 < ®, is the relaxation rate. In the high-frequency range
considered here, losses in metal grains are relatively small, o, < o. Therefore, the
real part & of the metal dielectric function &y is much larger (in modulus) than the
imaginary part &/, (|¢l,| /€ = @/@. > 1), and €, is negative for the frequencies @
less than the renormalized plasma frequency,

@ﬁ = 8%\/\@ AOOOV

Thus, the metal conductivity 6, = —ioe,/4n 2 (g,®2 /470)[i(1 — o7 /&) + /0]
is characterized by the dominant imaginary part for @, > © > @, that is, it is of
inductive character. The same is true for the Ohmic parameter u,, in the quasistatic
limit since it is just proportional to the metal conductivity in this limit. In the
opposite case of the strong skin effect, the Ohmic parameter uy, is inductive
according to Eq. (6.32) for all spectral ranges regardless of the metal properties.
Therefore, the metal grains can be modeled as inductances L while the dielectric
gaps can be represented by capacitances C. This model works for the optic and IR
regardless of the metal grain size and holds for all spectral ranges when the skin
effect is strong in the metal grains. Then, the percolation metal—dielectric film
represents a set of randomly distributed L and C elements. The collective surface
plasmons excited by the external field, can be thought of as resonances in different
L — C circuits, and the excited surface plasmon eigenstates are seen as giant
fluctuations of the local field [50].

Note that Ohmic parameter w takes the same sign and rather close absolute values
for metal and dielectric grains according to Eqs. (6.31)—(6.33). A film can be thought
of as a collection of C elements in “w” space. Therefore the resonance phenomena
are absent in a solution of Eq. (6.36). The fluctuations of the potential \/ can be
indeed neglected in comparison to the @' fluctuations. For this reason, we
concentrate attention on the properties of the “electric” field E(r) = —V¢'(r) =
—Vé(r) + Eg that can be found from solution of Eg. (6.58).

Because of difficulties in finding a solution to the Poisson Eq. (6.35) or (6.58), a
great deal of use is made of the tight binding model in which metal and dielectric
particles are represented by metal and dielectric bonds of a square lattice. After such
discretization, Eq. (6.58) acquires the form of the Kirchhoff’s equations definedon a
square lattice [3]. The Kirchhoff’s equations can be written in terms of the local
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dielectric constant and it is assumed that the external electric field Ey is directed
along the “x” axis. Thus, the following set of equations are obtained

STEi(d - 0) =D EEy (6.61)
J J

where ¢, and ¢, are the electric potentials determined at the sites of the square lattice
and the summation is over the nearest neighbors of the site i. The electromotive force
(emf) Ej; takes the value Egag for the bond (ij) in the positive x direction (where ag is
the spatial period of the square lattice) and —Epag, for the bond (ij) in the —x
direction; Ey = 0 for the other four bonds at the site i. Thus the composite is
modeled by a capacitor-inductor—resistor network represented by Kirchhoff’s
equations (6.61). The emf forces Ej; represent the external electric field applied to
the system. In transition from the continuous medium described by Eq. (6.58) to the
random network described by Eq. (6.61), it is usually supposed [1-4] that bond
permittivities &; are statistically independent and ay is set to be equal to the metal
grain size, ap = a. In the considered case of a two component metal-dielectric
random film, the permittivities &; take the values &, and &;, with probabilities p and
1 — p, respectively. The assumption that the bond permittivities ; in Eq. (6.61) are
statistically independent considerably simplify computer simulations as well as
analytical consideration of local optical fields in the film. Note that important critical
properties are universal, that is, they are independent of details of a model (e.g.,
possible correlation of permittivities €; in different bonds).

6.4.2. Numerical Model

Now, there exist very efficient numerical methods for calculating the effective
conductivity of composite materials (see [1-4,8,55,56]), but they typically do not
allow calculations of the field distributions. To calculate local field distribution, a
new original method had been developed. It is based on the real-space renormaliza-
tion group (RSRG) method that was suggested for percolation by Reynolds, et al.
[57] and Sarychev [58], and then extended to study the conductivity [59] and the
permeability of oil reservoirs [60]. By following the approach used by Aharony, the
RSRG method was adopted to finding the field distributions in the following way
[38,39,61]. First, a square lattice of L-R (metal) and C (dielectric) bonds was
generated using a random number generator. As seen in Fig. 6.3, such a lattice can be
considered as a set of “corner” elements. One of such elements is labeled as
(ABCDEFGH) in Fig. 6.3. In the first stage of the RSRG procedure, each of these
elements is replaced by the two Wheatstone bridges, as shown in Fig. 6.3. After this
transformation, the initial square lattice is converted to another square lattice, with
the distance between the sites twice larger and with each bond between the two
nearest-neighboring sites being the Wheatstone bridge. Note that there is a 1:1
correspondence between the x bonds in the initial lattice and the x bonds in the x
directed bridges of the transformed lattice, as seen in Fig. 6.3. The same 1:1
correspondence also exists between the y bonds. The transformed lattice is also a
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Figure 6.3. The real-space renormalization scheme.

square lattice, and we can again apply to it the RSRG transformation. We continue
this procedure until the size £ of the system is reached. As a result, instead of the
initial lattice we have two large Wheatstone bridges in the x and y directions. Each of
them has a hierarchical structure consisting of bridges with the sizes from 2 to L.
Because the 1:1 correspondence is preserved at each step of the transformation, the
correspondence also exists between the elementary bonds of the transformed lattice
and the bonds of the initial lattice. After using the RSRG transformation, the
periodic boundary conditions (see, e.g., [8]) are applied and the Kirchhoff’s
equations (6.61) are solved to determine the fields and the currents in all the bonds of
the transformed lattice. Due to the hierarchical structure of the transformed lattice,
these equations can be solved exactly. Then, the 1:1 correspondence between the
elementary bonds of the transformed lattice and the bonds of the initial square lattice
is used to find the field distributions in the initial lattice as well as its effective
dielectric constant. The number of operations to get the full distributions of the local
fields is proportional to £? and is much less than the L7 operations needed in the
transform-matrix method {3,62] and the Yo operations needed in the well-known
Frank-Lobb algorithm [55], which does not provide the field distributions but the
effective conductivity only. The RSRG procedure is certainly not exact since the
effective connectivity of the transformed system does not repeat the connectivity of
the initial square lattice exactly. To check the accuracy of the RSRG, the 2d
percolation problem was solved using this method [39]. Namely, the effective
parameters were calculated for a two-component composite with the real metallic
conductivity o, much larger than the real conductivity o, of the dielectric com-
ponent G, > 04. It obtained the percolation threshold p. = 0.5 and the effective
conductivity at the percolation threshold that is very close to o(p;) = \/0mGCa.
These results coincide with the exact ones for 2d composites [50]. This is not
surprising since the RSRG procedure preserves the self-duality of the initial system.
The critical exponents obtained by the RSRG are also in agreement with known
values of the exponents from the percolation theory [1,3]. Thus the ratio of the
critical exponent s for the static dielectric constant and the exponent v for the
percolation correlation length is equal to s/v ~ 0.94, the ratio of the critical
exponent ¢ for the static conductivity and the exponent v is equal to ¢/v ~ 0.82.
These results should be compared with s/v ~ t/v ~ 1 that follow from the percola-
tion theory for 2d composites. Therefore, there are good reasons to believe that the
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numerical method describes at least qualitatively the field distributions on semi-
continuous metal films. Below the RSRG exponents s/v ~ 0.94 and z/v ~ 0.8 are
used when the computer results obtained by RSRG are compared with the scaling
theory.

6.4.3. Giant Fluctuations of the Local Fields

The real-space renormalization method described above was employed to solve

Eq. (6.61) and to calculate the potentials ¢; in the lattice. Then, we find the local
field E(r) and electric current jz(r) in terms of the average field Eq. The effective
Ohmic parameter #, is determined by Eq. (6.39), which can be written as
(jg) = u.Eo. The effective dielectric constant &, is equal to 4miu./wd. In the same
manner, the field H(r), the magnetic current jy(r), and the effective parameter w,
can be found from Eq. (6.36) and its lattice discretization. Note that the same lattice
should be used to determined the fields E(r) and H(r). The directions of the external
fields Ey and Hy may bé chosen arbitraryly when the effective parameters u, and w,
are calculated since the effective parameters do not depend on the direction of the

“field for a film, which is isotropic as a whole.

Though the effective parameters do not depend on the external field, the local
electric E;(r) and magnetic and H; (r) fields do depend on the incident wave. The
local fields E;(r) and H;(r) are define in the reference plane z = —d/2 — Iy (see
Fig. 6.1). Note that the field E; (r) is observed in a typical near-field experiment (see
Chapter 3). For the calculations below the electric and magnetic fields of the incident
EM wave have been chosen in the form (E;) = {1,0,0} and (H;) = {0,—1,0} in
the plane z = —Iy — d/2. This choice corresponds to the wavevector of the incident
wave as k = (0,0, —k), that is, there is only a transmitted wave behind the film (see
Fig. 6.1). It follows from the average of Eq. (6.38), which can be written as
(E;) = Eo + (2nt/c)w.[n x Ho] and (Hi) = Ho + (2rt/c)u.[n x Eo] that the fields
Eq and Hj, are given by

B, — (1) = @r/c)we[n x M)l g, = H - @n/cjuln x {Ev)]
1+ (21/c) uew, 1+ (2n/c) ucw,

(6.62)

These values of the fields Eq and Hy are used to calculate the local fields E(r) and
H(r). The local electric E;(r) and magnetic H;(r) fields are restored then from the
fields E(r) and H(r) by using Eq. (6.38).

The local electric and magnetic fields have been calculated in silver-on-glass ,

semicontinuous film as functions of the surface concentration p of silver grains. The
typical glass dielectric constant g, is €5 = 2.2. The dielectric function for silver was
chosen in the Drude form (6.59); the following parameters were also used in
Eq. (6.59): the interband-transition contribution &, =5, the plasma frequency
o, = 9.1eV, and the relaxation frequency w, = 0.021 eV [63]. The metal grains are
supposed to be oblate. The ratio of the grain thickness 4 (film thickness) and the
grain diameter D has been chosen as D/d = 3, the same as used in [18]. To consider
the skin effect of different strengths (i.e., different interactions between the electric
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and magnetic fields), we vary the size d of silver particles in a wide range,
d =1 + 100 nm. The size of metal grains in semicontinuous metal films is usually
on the order of a few nanometers, but it can be increased significantly by using the
proper method of preparation [64]. For microwave experiments [20] the films were
prepared by the lithography method, so that the size of the metal particle could vary
over a large range.
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Figure 6.4. Distribution of local EM field intensities (a) Iz = [E; ()*/KE)* and (b)
Iy = | H;(r)*/|(H,))* in a semicontinuous silver film at the percolation threshold for
% = lum and 8/d = 4.5, where § is the skin depth and d is the thickness of the film.
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The space distribution of the electric and magnetic fields was calculated at two
sets of parameters, as illustrated in Figs. 6.4-6.7. In Figs. 6.4 and 6.5, we show the
electric and magnetic field distributions for A = 1 um and two different thicknesses
d of the film, d = 5 and d = 50 nm. The first thickness (Fig. 6.4) corresponds to a
weak skin effect since the dimensionless thickness is small, A = d/8 = 0.2, where
8 = 1/ k (Imn,,) is the skin depth. In this case, we observe the giant field fluctua-
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Figure 6.5. Distribution of local EM field intensities (a) Ir = [E;(x)]*/|(E\)|* and (b)

Iy = [Hy(r)*/|(H,)]* in a semicontinuous silver film at the percolation threshold for
A =1pm and §/d = 0.45.
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tions of the local electric field; the magnetic field also strongly mcoEmﬁom. over the
film but the field peaks are small compared to the electric field. The reason 18 H.:mﬁ the
film itself is not magnetic, f; = W, = 1, and the interaction of the magnetic field
with the electric field through the skin effect is relatively small. .

In Fig. 6.5, we show results for a significant skin effect, when the film a:o.w:mmm
d — 50nm and the dimensionless thickness exceeds 1, A =2.2. It is interesting to

2.0x10

100

()

. 2
Figure 6.6. Distribution of local EM field intensities (a) Ip = |E; C.V_W\ [{E})|” and (b)
Iy = _m_?v_m / |(H;)|* in a semicontinuous silver film at the percolation threshold for

A = 10 um and 8/d = 4.5.
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note that the amplitude of the electric field is roughly the same as in Fig. 6.4(a),
despite the fact that the parameter A increased by one order of magnitude. In
contrast, the local magnetic field (Fig. 6.5(b)) is strongly increased in this case so
that the amplitude of the magnetic field in peaks is of the same order of magnitude as
the electric field maxima. This behavior can be understood by considering the spatial
moments of the local magnetic field as shown in Section 6.5.

In Figs. 6.6 and 6.7, we show results of the calculations for the local electric and
magnetic fields at A = 10 um, when the metal dielectric constant |g,,| ~ 10*. We see
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that in this case the local magnetic field can even exceed the electric field.
Systematic computer simulation of the local electric field for a different wavelength
and metal concentration a reader can find in [39,41-45]. The giant local field
fluctuations were observe first in the microwave experiment [20] and then in the
optic near-field experiments [21,22].

Being given the local fields, the effective parameters u, and w, can be found as
well as the effective optical properties of the film. In Figs. 6.8 and 6.9, we show the
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Figure 6.7. Distribution of local EM field intensities (a) Iz = |[E;(r)[*/|(E)}* and (b)

Iy = [H(r)*/|(H;)]* in a semicontinuous silver film at the percolation threshold for
A = 10pm and 8/d = 0.45.

1.0
ot
05 i i
W ) ;
\S\&&.%\Q\\ i
.
w\G

D
9% v 7 \ \\\\
. \%Mwmw\\m .
&\& \\\\“\ i
o5 L
4

(b)

Figure 6.8. Computer simulation of (a) absorptance A, (b) reflectance R, and ()
transmittance T for a silver-on-glass semicontinous film as functions of metal concentration
p and film thickness d (pm) at A = 1 um.
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10 0,001
© ,
Figure 6.8. (Continued)

reflectance, transmittance, and absorbance as functions of silver concentration p, for
wavelengths X = 1 and 10 um, respectively. The absorbance in these figures has an
anomalous maximum in the vicinity of the percolation threshold that corresponds to
the behavior predicted by Eq. (6.56). This maximum was first detected in the
experiments [13-16]. The maximum in the absorption corresponds to strong fluctua-
tions of the local fields. In Eq. (6.55), we have estimated the concentration range Ap
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Figure 6.9. Computer simulation of (a) absorptance A, (b) reflectance R, and ©)
transmittance T for a silver-on-glass semicontinous film as functions of metal concentration
p and film thickness d (um) at A = 10 um.
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Figure 6.9. (Continued)

centered at the percolation threshold p. (where the giant local field fluctuation:
occur) as Ap oc 1/A. Indeed, the absorbance shrinks at transition from Fig. 6.8
Fig. 6.9, when the wavelength A increases 10 times. In Figs. 6.10 and 6.11, w
compare results of numerical simulations for the optical properties of silve
semicontinuous films with calculations based on the effective medium approacl
[Egs. (6.51) and (6.52)] represented in terms of the new Ohm’s parameters u m:a.e_
Results of such a “dynamic” effective-medium theory are in good agreement witl
our numerical simulations for arbitrary skin effects.



254 FIELD DiSTRIBUTION, ANDERSON LOCALIZATION, AND OPTICAL PHENOMENA

A
0.5

00— 71— 7T 1T
00 02 04 06 08 1.0
(b)
Figure 6.10. Results of computer simulations (dashed line) and the dynamic effective—
medium theory (solid line) for (a) absorptance A, (b) reflectance R, and (c) transmittance T of

a silver-on-glass semicontinuous film as a function of the metal concentration p at
wavelengths A = 1 um and thickness d = 50 nm.
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Figure 6.10. (Continued)
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Figure 6.11. Results of computer simulations (dashed line) and the dynamic effective-
medium theory (solid line) for (a) absorptance A, (b) reflectance R, and (c) transmittance T of

a silver-on-glass semicontinuous film as a function of the metal concentration p at wave-
lengths A = 10 pm and thickness d = 5 nm. )
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R 6.5. ANDERSON LOCALIZATION OF SURFACE PLASMONS
1.0
0.9 .H In this section, we follow the approach developed in recent papers [21,45,46]. To
1 estimate the local field distribution analytically it is convenient to start with
0.8 Bl Kirchhoff’s equations (6.61). For further consideration, it is assumed that the square
0.7 - lattice has a very large but finite number of sites N and rewrite Eq. (6.61) in matrix
0.6 N form with the “Hamiltonian” J€ defined in terms of the local dielectric constants,
0.5 Fo=¢ (6.63)
0.4 ] where ¢ is a vector of the local potentials ¢ = {1, dy, . .., dy} determined in all N
03 N sites of the lattice, vector £ equals to &; = M\ g;Ey, as it follows from Eq. (6.61)
- The Hamiltonian € is N x N matrix that has off-diagonal elements H; = —&; anc
0.2 diagonal elements defined as H;; = MU\. &;, where j refers to nearest neighbors of site
0.1 _ i. The off-diagonal elements H; take values €; > 0 and £, with probability p anc
. 1 — p, respectively. The diagonal elements H;; are Eq. (6.61) distributed betweer
0.0 L 2d§,, and 2dg,, where d is the dimensionality of the space (24 is the number of the
0.0 0.2 P nearest neighbors in d dimensional square lattice).
The dielectric constant &, is negative in the visible and IR spectral ranges for
typical metal as it was discussed after Eq. (6.59). Therefore, £€,, can be written as
T &m = |8 |(—1+ix), where the loss factor x =&, /[€,| is small, ¥ < 1. Thi
1.0 equation for &, holds in all spectral ranges if the skin effect is strong in the meta
0.9 7 grains. It is shown below that the fluctuations of the local fields are significant wher
. g is negative and the losses are small. It is supposed in this and Sections 6.6 and 6.’
0.8 - that this condition is fulfilled, that is, €], < 0 and k < 1.
0.7 ] It is convenient to represent the Hamiltonian € as a sum of two Hermitiar
. Hamiltonians J€ = € + ixF"’, where the term ixJ€" (i < 1) represents losses it
0.6 ] the system. The Hamiltonian € formally coincides with the Hamiltonian of th
0.5~ problem of metal-insulator transition (Anderson transition) in quantum system:
0.4 ] [65-68]. More specifically, the Hamiltonian J€ maps the quantum mechanica
- Hamiltonian for the Anderson transition problem with both on- and off-diagona
0.3 correlated disorder. Since the off-diagonal matrix elements in € have differen
0.2 - signs, the Hamiltonian is similar to the so-called gauge-invariant model. This model
0.1 ] in turn, is a simple version of the random flux model, which represents a quantun
- system with random magnetic field [65] (see also recent numerical studies [69-71])
0.0 LI Hereafter, we refer to operator € as to Kirchhoff’s Hamiltonian (KH).

Thus, the problem of the field distribution in the system, that is, the problem o
finding a solution to Kirchhoff’s Eq. (6.61), becomes an eigenfunction problem fo
the KH, #¥,, = A,¥,, whereas the losses can be treated as perturbations. Since th
real part € of the metal dielectric function &, is negative (£, <0) and th
permittivity of the dielectric host is positive (£, > 0), the manifold of the KI
eigenvalues A, contains eigenvalues that have the real parts equal (or close) to zerc
Then, eigenstates ¥, that correspond to eigenvalues |A,/E,| < 1 are strongl
excited by the external field and seen as giant field fluctuations representing th
resonant surface plasmon modes. If we assume that the eigenstates excited by th
external field are localized, they should look like local-field peaks. The averag
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Figure 6.11. (Continued)




